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Supplementary	Material	text		1	
The	supplementary	material	text	provides	detailed	description	of	the	quantum	and	classical	2	
models,	including	derivations	of	the	results	in	the	main	text	and	some	additional	details	3	
regarding	the	experimental	materials.			4	
	 		5	
Derivation	leading	to	Equation	(1)		6	
This	derivation	explains	the	basic	Quantum	Zeno	effect,	under	idealized	conditions.	The	7	
idealized	situation	referred	to	in	the	main	text	concerns	a	2D	quantum	system,	evolving	8	
under	a	unitary	time	independent	Hamiltonian.		9	

We	prepare	our	system	such	that	the	initial	state	is	|𝐼 	at	t=0	and	let	it	evolve	for	a	10	
total	time	𝑇 > 0.	We	are	interested	in	the	probability	that	measurements	performed	on	the	11	
state	at	each	of	the	times	𝑇 𝑁,	

2𝑇
𝑁…T	will	confirm	that	the	state	is	still	|𝐼 .	We	have	that:		12	

𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 𝑡𝑖𝑚𝑒 !
!
∧  𝐼 𝑎𝑡 !!

!
∧ … = 𝑃!𝑒

!!"#!
!
|𝐼

!

= 𝐼 𝑒!
!"#
! 𝐼

!! 
(S1)	13	

For	a	two-level	system	and	a	time	independent	Hamiltonian,	transition	probabilities	14	
typically	take	the	form	 𝐼 𝑒!!"# 𝐼 ! = 𝑐𝑜𝑠!(𝐸 ⋅ 𝑡).	In	physical	applications,	E	is	usually	an	15	
energy	variable.	Here,	it	can	be	thought	of	as	the	average	strength	of	a	piece	of	evidence,	16	
since	Et	is	the	rotation	angle	of	the	mental	state,	when	presented	with	t	pieces	of	evidence.	17	
Eq(S1)	then	readily	leads	to	the	expression,	which	is	Eq(1)	in	the	main	text:	18	

𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 𝑡𝑖𝑚𝑒
𝑇
𝑁
∧  𝐼 𝑎𝑡

2𝑇
𝑁
∧ … = 𝑐𝑜𝑠!!

𝛾
𝑁

,	
where	𝛾	is	a	dimensionless	constant.	19	
	20	
Unitary	dynamics	and	POVMs	21	
In	this	section	we	motivate	the	particular	choice	of	dynamics	and	measurement	operators	22	
used	in	the	quantum	and	Bayesian	models.		We	will	use	this	in	the	next	section	to	derive	23	
Eq.(2),	which	is	crucial	in	the	present	modeling,	since	it	allows	the	setting	of	all	parameters	24	
with	classical	data	and	thus	prior	to	testing	for	the	QZ	effect.		25	
	 In	general,	in	situations	such	as	the	one	we	consider,	the	most	appropriate	form	of	26	
dynamics	would	be	non-unitary.	This	is	because	the	expected	evolution	of	the	mental	state	27	
is	basically	like	a	decay	towards	a	fixed	state,	the	guilty	ray,	since	all	the	evidence	28	
participants	encounter	is	that	Smith	is	guilty	and	thus,	asymptotically,	participants	must	29	
become	certain	that	Smith	is	guilty.		30	
	 However,	there	are	two	features	of	our	experimental	set	up	that	mean	that	we	never	31	
need	consider	mental	states	close	to	the	guilty	ray.	First,	all	participants	initially	think	Smith	32	
is	innocent,	and	the	evidence	we	present	is	designed	to	be	weak,	so	that	the	probability	that	33	
participants	judge	Smith	to	be	guilty	never	rises	above	50%	(as	evidenced	in	the	data,	e.g.,	34	
see	Figure	2).	This	means	that	the	evolution	by	itself	never	leads	to	a	state	close	to	the	guilty	35	
state.	Thus,	the	only	way	a	participant’s	mental	state	can	end	up	close	to	the	guilty	state	is	36	
by	collapsing	to	this	state,	if	the	participant	answers	that	Smith	is	guilty	at	one	of	the	37	
intermediate	judgments.	However,	since	our	analyses	were	restricted	to	survival	38	
probability,	we	need	not	model	the	further	evolution	of	the	mental	state	after	a	guilty	39	
response.	Thus,	the	only	states	whose	dynamics	we	are	interested	in	are	those	far	from	the	40	
guilty	state.	For	these	states	the	fact	that	the	true	evolution	has	a	fixed	point	can,	to	a	good	41	
approximation,	be	ignored,	and	so	the	dynamics	of	such	states	may	be	treated	as	unitary.	Of	42	
course	it	is	ultimately	an	empirical	question	whether	this	approximation	allows	for	a	good	43	
fit	to	the	data.	In	addition,	in	future	work,	if	it	becomes	relevant	to	explore	a	broader	range	44	
of	experimental	manipulations	within	this	paradigm	and/or	conditions	for	the	mental	state,	45	
then	non-unitary	dynamics	could	be	employed.		46	
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	 So	far,	we	have	argued	that	we	can	model	the	dynamics	of	the	cognitive	state	as	47	
unitary.	However	it	turns	out	we	need	to	consider	time	dependent	unitary	dynamics	in	48	
order	to	capture	the	expected	behavior	of	the	cognitive	state.	This	is	essentially	because	we	49	
must	allow	for	the	fact	that	the	‘strength’	of	a	piece	of	evidence	may	depend	on	its	serial	50	
position	in	the	list	of	evidence	presented.	It	is	reasonable	(especially	in	light	of	earlier	51	
remarks	about	the	fact	we	expect	the	true	evolution	to	have	a	fixed	point)	that	we	should	52	
expect	to	see	a	primacy	effect,	or	equivalently	diminishing	returns,	in	the	weight	53	
participants	attach	to	different	pieces	of	evidence.	However	when	we	explicitly	introduce	a	54	
form	for	the	evolution	in	the	next	section	we	shall	allow	for	the	possibility	of	either	a	55	
primacy	or	a	recency	effect,	and	leave	it	as	an	empirical	question	which	behavior	we	see.		56	

We	also	want	to	discuss	the	choice	of	POVMs	to	model	the	measurements.	The	57	
particular	POVMs	we	use	simply	model	the	impact	of	some	noise	on	the	measurements,	so	58	
that	the	outcomes	are	no	longer	perfectly	correlated	with	the	cognitive	state.	Recall	that	the	59	
projectors	representing	Innocent	and	Guilty	are	given	by	𝑃! =

1 0
0 0 ,𝑃! =

0 0
0 1 .	The	60	

corresponding	POVM	operators	that	we	use	are	𝐸! =
1 − 𝜖 0
0 𝜖 ,𝐸! =

𝜖 0
0 1 − 𝜖 ,	where	𝜖	61	

encodes	the	degree	of	noise.	If	a	participant	considers	Smith	innocent,	so	that	the	cognitive	62	
state	is	|𝜓 = !

! ,	then	the	probability	of	responding	innocent	is	only	1 − 𝜖,	leaving	a	63	
probability	to	respond	guilty	of	𝜖.	Since	𝜖	is	a	parameter	whose	value	we	estimate	from	the	64	
data	it	may	be	that	the	best	fit	is	provided	by	𝜖 = 0,	in	which	case	we	recover	the	usual	65	
formalism	of	projective	measurements.	Note	that	the	version	of	the	collapse	postulate	that	66	
applies	to	POVMs	is	that	after	a	measurement	of	the	POVM	E,	which	yields	the	answer	‘yes’,	67	
the	state	changes	according	to	|𝜓 → !|!

!|!
.	For	more	on	POVMs	see	(26).	68	

	69	
Derivation	of	Equation	(2).	70	
We	can	now	proceed	to	derive	Eq.(2)	in	the	main	text.	At	time	0	participants	have	not	yet	71	
heard	any	evidence	and	at	each	time	step	participants	are	presented	with	evidence	which	72	
supports	the	possibility	of	Smith’s	guilt.	The	probability	that	at	𝑡 = 0	a	participant	initially	73	
responds	that	Smith	is	innocent	is	given	as:		74	

𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 0 = 𝜓 𝐸! 𝜓 = 1 − 𝜖 𝐼 𝜓 ! + 𝜖 𝐺 𝜓 !	 	 (S2)	75	
where	𝐸! 	is	the	POVM	for	innocent.	This	expression	tells	us	that	any	participant	who	76	
answers	innocent	for	this	initial	judgment	(before	encountering	any	evidence)	may	be	77	
assumed	to	be	in	state	|𝐼 	with	probability	1 − 𝜖	and	in	state	|𝐺 	with	probability	𝜖.		78	
	 The	general	form	of	the	transition	probability	for	a	time-dependent	Hamiltonian	is	79	

given	by	𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 𝐼 𝑒!! !"!
! !(!) 𝜓

!
.	Then,	the	probability	that	a	participant	80	

answers	innocent	after	seeing	t	pieces	of	evidence,	without	any	intermediate	judgments,	81	
given	an	initial	response	of	innocent,	is		82	

𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 𝑡 𝐼 𝑎𝑡 0 =
𝐸!𝑒!! !"!

!  ! ! 𝐸!|𝜓
!

𝐸!|𝜓
! ≈ (1 − 𝜖) 𝐸!𝑒!! !" !(!)!

! |𝐼
!
	

(S3)	83	
	 To	progress,	we	must	make	some	assumptions	regarding	the	Hamiltonian,	H(t).	The	84	
Hamiltonian	for	any	system	in	a	two-dimensional	Hilbert	space	can	be	written	as	a	sum	of	85	
the	identity	operator	plus	the	three	Pauli	matrices,	each	with	a	time-dependent	prefactor.	86	
As	argued	elsewhere	(15,	18),	it	is	reasonable	to	simplify	the	general	expression	for	the	87	
time-dependent	Hamiltonian	of	cognitive	bivalued	systems	to	𝐻 𝑡 = 𝑏 𝑡 𝜎! = 𝑏 𝑡 0 1

1 0 ,	88	
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where	𝑏 𝑡 	is	a	function	of	time.	Let	us	next	define	𝐵 𝑡! , 𝑡! = 𝑑𝑠 𝑏 𝑠!!
!!

,	which	89	
incidentally	is	dimensionless.	Then,	Eq(S3)	can	be	written	as	90	

𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 𝑡 𝐼 𝑎𝑡 0 = (1 − 𝜖) 𝐸!𝑒!! !" !(!)!
! |1

!

= (1 − 𝜖) 𝐸! Ι ⋅ 𝑐𝑜𝑠 𝐵 0, 𝑡 − 𝑖𝜎!  𝑠𝑖𝑛 𝐵 0, 𝑡 |1
!

= 1 − 𝜖 !𝑐𝑜𝑠! 𝐵 0, 𝑡 + 𝜖(1 − 𝜖)𝑠𝑖𝑛! 𝐵 0, 𝑡 	
which	is	Eq(2)	in	the	main	text.		91	
	92	
Understanding	the	function	𝑩(𝒕𝒎, 𝒕𝒏),	fixing	it	from	data,	and	the	Interpretation	of	the	93	
parameters	94	
Both	the	quantum	and	classical	models	for	opinion	change	involve	the	parameter	𝜖,	which	95	
takes	into	account	erroneous	responses,	and	the	function	𝐵(𝑡! , 𝑡!),	which	tells	us	how	the	96	
opinion	state	changes	with	accumulating	evidence.	In	this	section	we	describe	how	the	97	
function	𝐵(𝑡! , 𝑛)	can	be	specified,	how	to	estimate	it	from	empirical	data,	and	how	to	98	
interpret	its	parameters.		99	

Recall,	the	function	𝐵 𝑡! , 𝑡! 	controls	the	change	of	the	mental	state,	as	a	result	of	100	
considering	𝑡! − 𝑡!	pieces	of	evidence,	assuming	that	a	judgment	was	made	at	𝑡! .	101	
Therefore	a	naïve	guess	at	this	function	would	simply	be	the	sum	of	the	relative	strengths	of	102	
all	pieces	of	evidence	considered,	multiplied	by	an	overall	constant,	i.e.	103	

𝐵 𝑡! , 𝑡! =?𝛼 𝑎!

!

!!!!!

	

However	the	weight	given	to	a	piece	of	evidence	may	depend	on	its	position	in	the	104	
sequence.	Pieces	of	evidence	that	come	later	after	a	judgment	may	have	less	impact	on	the	105	
opinion	state	than	pieces	of	evidence	that	come	immediately	after	a	judgment,	or	vice	versa.	106	
Thus	a	better	choice	is,	107	

𝐵 𝑡! , 𝑡! = 𝛼 𝑎!

!

!!!!!

𝑔(𝑡! − 𝑡!!!)	

	108	
where	the	function	𝑔 𝑡  is	a	monotonic	function	of	𝑡.	The	choice	of	argument	is	made	so	that	109	
𝐵 0, 𝑡! = 𝛼 𝑎!𝑔(0),	and	we	take	𝑔 0 = 1	by	convention.		110	
	 Note	that	the	argument	of	𝑔 𝑡 	reflects	the	number	of	pieces	of	evidence	seen	since	111	
the	last	judgment	was	made,	not	the	total	number	of	pieces	of	evidence	seen.	This	is	very	112	
natural	in	the	quantum	model,	since	the	idea	is	that	the	process	of	making	a	judgment	113	
‘collapses’	the	knowledge	state	back	to	the	initial	state	(assuming	an	‘innocent’	judgment.)	114	
This	implies	the	state	post-judgment	should	have	the	same	sensitivity	to	evidence	as	the	115	
initial	state,	and	so	any	primacy/recency	effects	should	be	reset.	However	this	argument	116	
cannot	be	made	in	a	Bayesian	model,	since	‘collapse’	is	a	characteristically	quantum	feature.	117	
Therefore	the	Bayesian	model	will	involve	a	slightly	different	function,	𝐵! 𝑡! , 𝑡! ,	where	118	

𝐵! 𝑡! , 𝑡! = 𝛼 𝑎!

!

!!!!!

𝑔(𝑡! − 𝑡!)	

There	are	many	choices	for	the	function	𝑔 𝑡 .	We	will	make	the	choice	𝑔 𝑡! −119	
𝑡!!! = 𝑒!! !!!!! ! ,	so	that	overall	we	have:		120	

						121	

𝐵 𝑡! , 𝑡! = 𝛼 𝑎!

!

!!!!!

 𝑒!! !!!!! ! 	
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	 						122	

𝐵! 𝑡! , 𝑡! = 𝛼 𝑎!

!

!!!!!

 𝑒!! !!! ! 	

(S4)	123	
A	positive	value	of	𝛽	corresponds	to	a	primacy	effect,	or	diminishing	returns,	whereas	a	124	
negative	value	of	𝛽	corresponds	to	a	recency	effect.	This	form	for	𝑔 𝑡 	may	be	motivated	by	125	
considering	a	continuous	analogue	of	the	process	of	evidence	presentation.	Thus,	our	choice	126	
of	𝐵 𝑡! , 𝑡! ,	involves	two	free	parameters,	𝛼,𝛽.	Note	that	there	is	no	fitting	regarding	the	127	
relative	strength	parameters	in	Eq(S4),	𝑎! .	For	a	particular	piece	of	evidence	i,	𝑎! =128	

!"#$!%# !"#$%&"! !"# !"#$!%&! !
!"#$!%# !"#$%&"! !" !"" !"#$#% !" !"#$!%&!

,	where	both	averages	are	across	participants.	Crucially	129	

the	fact	that	we	have	reduced	the	determination	of	the	functions	𝐵(𝑡! , 𝑡!)	and	𝐵!(𝑡! , 𝑡!)		to	130	
the	identification	of	two	parameters	means	we	can	fix	𝐵(𝑡! , 𝑡!)	and		𝐵! 𝑡! , 𝑡! given	data	131	
on	𝐵(0,𝑇),	which	in	turn	means	we	can	fix	it	from	data	which	does	not	concern	132	
intermediate	judgments.	The	relative	strength	of	the	pieces	of	evidence,	ie	the	𝑎! 	are	given	133	
in	Table	1S.	134	

The	parameter	𝛼	is	simply	a	factor	that	converts	between	evidence	strength	and	135	
angle	of	rotation	of	the	opinion	state.	It	is	related	to	the	overall	strength	of	the	prosecution’s	136	
case,	but	it	does	not	have	a	particularly	interesting	interpretation.	137	

The	parameter	𝛽	is	more	interesting.	Its	inverse	square	root	indicates	the	number	of	138	
pieces	of	evidence	after	which	the	primacy	or	recency	effect	starts	to	have	a	large	impact	on	139	
the	effect	of	additional	evidence.	For	example,	in	Experiment	1,	the	best	fit	was	for	𝛽 = 0.01.	140	
This	tells	us	that	diminishing	returns	starts	to	play	a	role	after	around	10	pieces	of	evidence,	141	
so	we	would	not	expect	to	see	much	impact	from	this	in	the	results.	This	is	evident	in	Figure	142	
2A,	where	we	see	a	pure	QZ	effect.	In	contrast,	in	Experiment	2	the	best	fit	was	for	143	
𝛽 = 0.0285.	This	suggests	diminishing	returns	should	start	to	have	an	impact	on	behavior,	144	
after	about	6	pieces	of	evidence.	We	can	see	this	both	in	Figure	1B,	where	there	is	an	145	
obvious	change	in	behavior	from	6	to	12	pieces	of	evidence,	and	also	in	Figure	2B.	In	Figure	146	
2B	the	noticeable	dip	in	survival	probability	takes	place	between	one	judgment	(i.e.,	only	147	
one	judgment	after	all	evidence	has	been	presented)	and	two	judgments.	This	is	equivalent	148	
to	considering	the	evidence	either	as	one	group	of	12	pieces	(evidence	after	6	pieces	would	149	
have	a	low	impact,	broadly	speaking)	or	as	two	groups	of	6	pieces	of	evidence	(according	to	150	
the	quantum	model,	in	this	case,	after	6	pieces	of	evidence	and	one	judgment,	the	following	151	
6	pieces	of	evidence	would	also	be	taken	into	account	in	the	same	way	as	the	original	6;	152	
hence,	the	survival	probability	drops	–	more	bias	that	Smith	is	guilty).		153	

The	best	fit	value	for	𝜖	was	approximately	3%	in	Experiment	1	and	1%	in	154	
Experiment	2.	This	means	that	a	participant	whose	cognitive	state	is	perfectly	aligned	with	155	
the	innocent	ray	may	still	have	a	≈	1%	or	3%	chance	of	answering	that	Smith	is	guilty,	when	156	
queried.	While	this	does	not	appear	high	for	any	individual	judgment,	in	an	experiment	157	
which	employs	more	than	two	or	three	judgments,	the	cumulative	error	rate	can	quickly	158	
increase	beyond	5%.	Therefore,	with	multiple	judgments,	even	in	the	presence	of	a	simple	159	
procedure	and	very	clear	instructions	(as	in	the	present	work),	the	possibility	that	160	
participants	respond	incorrectly	(i.e.,	in	a	way	inconsistent	with	their	mental	state)	needs	to	161	
be	incorporated	in	any	modeling.	The	difference	in	the	value	of	𝜖 between	Experiment	1	and	162	
Experiment	2	explains	why	there	is	a	dip	in	survival	probability	for	large	N	in	Experiment	1	163	
(Figure	2A)	but	this	is	not	observed	in	Experiment	2	(Figure	2B).	164	
	165	
Computing	the	(quantum)	survival	probability,	for	N	intermediate	measurements	166	
(Equation	3)	167	
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This	section	presents	the	derivation	for	the	quantum	survival	probability.	Following	the	168	
usual	convention	in	this	work	of	denoting	innocence	with	|𝐼 ,	we	have	that:	169	
𝑃𝑟𝑜𝑏 ′𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,𝑁 = 𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡 !

!
𝐴𝑁𝐷 𝐼 𝑎𝑡 !!

!
𝐴𝑁𝐷… 𝐼 𝑎𝑡 𝑇 ≈170	

(1 − 𝜖) 𝐸!exp −𝑖𝐵 !"
!
, !!! !

!
𝜎!!!!

!!! |𝐼
!
=171	

(1 − 𝜖) 𝐸! I. cos 𝐵 !"
!
, !!! !

!
− 𝑖𝜎! . 𝑠𝑖𝑛 𝐵 !"

!
, !!! !

!
!!!
!!! |𝐼

!

	172	

(S5)	173	
These	probabilities	are	quite	complicated	and	it	is	not	necessary	to	give	the	full	174	

expression	for	every	value	of	N	here.	However,	we	can	simplify	them	quite	considerably	by	175	
noting	that	both	𝜖	and	𝑠𝑖𝑛(𝐵 𝑡! , 𝑡! )	are	small	compared	to	1.	Doing	this	allows	us	to	write	176	
(this	is	Eq(3)	in	the	main	text):		177	

𝑃𝑟𝑜𝑏 ′𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,𝑁 = 𝑃𝑟𝑜𝑏 𝐼 𝑎𝑡
𝑇
𝑁
𝐴𝑁𝐷 𝐼 𝑎𝑡

2𝑇
𝑁
𝐴𝑁𝐷… 𝐼 𝑎𝑡 𝑇

= 1 − 𝜖 !!! cos! 𝐵
𝑖𝑇
𝑁
,
𝑖 + 1 𝑇
𝑁

!!!

!!!

+ 𝜖 1 − 𝜖 ! 𝑠𝑖𝑛! 𝐵
𝑁 − 1 𝑇
𝑁

,𝑇 cos! 𝐵
𝑖𝑇
𝑁
,
𝑖 + 1 𝑇
𝑁

!!!

!!!

+ 𝑂 𝜖!

+ 𝑂(𝑠𝑖𝑛!)	
(3)	178	

Note	that	Eq(3)	has	a	reasonably	clear	interpretation.	The	first	term	is	the	179	
probability	that	the	state	never	changes,	multiplied	by	the	probability	that	the	N	imperfect	180	
measurements	all	come	out	in	the	expected	way	(i.e.,	that	Smith	is	innocent).	The	second	181	
term	represents	the	probability	that	the	state	changes	between	the	second	to	last	and	last	182	
measurements,	but	that	the	last	measurement	fails	to	detect	this	change.	Further	terms	183	
either	represent	earlier	changes	in	the	state,	and	so	more	failed	detections,	or	the	state	184	
changing	back	to	innocent	from	guilty	(the	probability	for	this	last	possibility	is	expected	to	185	
be	negligible	for	other	reasons,	since	a	participant	who	thinks	Smith	is	guilty	is	very	186	
unlikely	to	revert	and	respond	that	Smith	is	innocent,	after	seeing	more	guilty	evidence).		187	
		188	
Bayesian	survival	probability	189	
To	derive	a	Bayesian	expression	for	survival	probability,	we	will	assume	that	the	process	of	190	
making	a	judgment	does	not	affect	the	mental	state,	but,	as	judgments	are	imperfect,	there	191	
is	a	small	probability, 𝜖,	of	making	incorrect	responses	(that	is,	providing	an	answer	which	192	
does	not	reflect	the	mental	state).		193	

As	noted	in	the	main	text,	much	of	the	information	we	need	to	build	a	Bayesian	194	
model	can	be	extracted	from	Eq(2).	Recall	that	we	denote	by	𝐼! 	the	event	where	a	195	
participant	believes	Smith	is	innocent,	and	𝐼! 	the	event	where	a	participant	responds	that	196	
Smith	is	innocent,	and	similarly	for	guilty.	Then	from	Eq(2)	we	have,	197	

𝑃𝑟𝑜𝑏 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 0 = cos! 𝐵 0, 𝑡 	
𝑃𝑟𝑜𝑏 𝐺!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 0 = sin!(𝐵 0, 𝑡 )	
𝑃𝑟𝑜𝑏 𝐼! 𝐼! = 1 − 𝜖 , 𝑃𝑟𝑜𝑏 𝐺! 𝐼!  = 𝜖	
𝑃𝑟𝑜𝑏 𝐺! 𝐺! = 1 − 𝜖 , 𝑃𝑟𝑜𝑏 𝐼! 𝐺! = 𝜖	

The	probabilities	involving	transitions	from	Guilty	cognitive	states	to	Innocent	ones	are	198	
assumed	to	be	0,	as	in	the	quantum	model.	199	
	 The	Bayesian	survival	probability	is	equal	to,	200	
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𝑃𝑟𝑜𝑏! ′𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,𝑁 = 𝑝𝑟𝑜𝑏 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

,… 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑇
𝑁
𝐼!  𝑎𝑡 0 	

We	need	two	assumptions	to	allow	us	to	write	this	in	terms	of	quantities	we	know.	The	first	201	
is	that	𝜖	is	small,	and	the	second	is	that	transition	probabilities	from	𝐺! 	to	𝐼! 	are	small.	The	202	
first	of	these	is	justified	by	appeal	to	the	data,	the	second	by	the	nature	of	the	empirical	set	203	
up,	since	we	only	present	evidence	implying	Smith’s	guilt.	Given	these	two	assumptions,	we	204	
can	show,	205	

𝑃𝑟𝑜𝑏 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

,… 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑇
𝑁
𝐼!  𝑎𝑡 0 	

≈ 1 − 𝜖 !!!  𝑃𝑟𝑜𝑏 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

,… 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑇
𝑁
𝐼!  𝑎𝑡 0 	

+ 𝜖 1 − 𝜖 ! 𝑃𝑟𝑜𝑏 𝐺!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

,… 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑇
𝑁
𝐼!  𝑎𝑡 0  	

This	follows	because	the	probability	of	transitioning	back	to	𝐼! 	from	𝐺! 	is	essentially	0,	and	206	
it	is	very	unlikely	that	the	state	𝐺! 	is	incorrectly	classified	by	more	than	one	judgment.	Thus	207	
the	only	non-negligible	possibility	other	than	that	the	cognitive	state	was	always	aligned	208	
with	innocent	is	that	the	state	changed	between	the	penultimate	and	final	judgments.	209	
	 Next,	it	is	easy	to	see	that,	210	
	211	

𝑃𝑟𝑜𝑏 … , 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡! , 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡!!!,… 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡! 𝐼!  𝑎𝑡 0
≈ 𝑃𝑟𝑜𝑏 … , 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡! 𝐼!  𝑎𝑡 0 ,	

	212	
which	follows	because	we	are	assuming	the	transition	probabilities	from	𝐺! 	to	𝐼! 	are	small,	213	
so	that	if	the	state	is	𝐼! 	now,	it	is	very	unlikely	to	have	been	𝐺! 	at	any	time	in	the	past.	The	214	
survival	probability	then	reduces	to,	215	
	 	216	

𝑃𝑟𝑜𝑏! ′𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,𝑁 =
≈ 1 − 𝜖 !!! 𝑃𝑟𝑜𝑏 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇 𝐼!  𝑎𝑡 0

+  𝜖 1 − 𝜖 ! 𝑃𝑟𝑜𝑏 𝐺!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

𝐼!  𝑎𝑡 0 	

We	can	also	write,	217	

𝑃𝑟𝑜𝑏 𝐺!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇, 𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

𝐼!  𝑎𝑡 0

= 𝑃𝑟𝑜𝑏 𝐺!  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇 𝐼!  𝑎𝑡 
𝑁 − 1 𝑇
𝑁

𝑃𝑟𝑜𝑏  𝐼!  𝑎𝑡 𝑡𝑖𝑚𝑒
𝑁 − 1 𝑇
𝑁

𝐼!  𝑎𝑡 0 	

So	we	may	finally	write,		218	
𝑃𝑟𝑜𝑏! ′𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!,𝑁 =

≈ 1 − 𝜖 !!! cos! 𝐵! 0,𝑇

+  𝜖 1 − 𝜖 ! sin! 𝐵!
𝑁 − 1 𝑇
𝑁

,𝑇 cos! 𝐵! 0,
𝑁 − 1 𝑇
𝑁

	

	219	
Additional	details	on	the	experimental	methods.	220	
Block	 Evidence	 Relative	

Strength,	𝑎! 	
S.D.	

1	 Dixon	was	successful	in	his	career	and	had	recently	been	
promoted.	 0.92	 0.49	
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	 Dixon	had	arranged	a	number	of	social	engagements	for	
the	week	after	his	death.	 0.83	 0.48	

	 Dixon	had	no	history	of	depression	or	related	conditions.	 0.94	 0.48	
2	 Dixon	was	engaged	to	be	married.	 0.89	 0.49	
	 One	of	Smith’s	previous	housemates	reported	that	Smith	

made	him	feel	threatened.	 1.15	 0.50	
	 Friends	and	colleagues	reported	that	Dixon	did	not	seem	

obviously	stressed	or	depressed	in	the	days	leading	up	to	
his	death.	 0.90	 0.48	

3	 Neighbours	reported	overhearing	Dixon	and	Smith	
engaged	in	heated	conversations	on	the	evening	before	
Dixon’s	death.	 1.25	 0.43	

	 Dixon	appeared	to	have	a	large	quantity	of	savings.	 0.70	 0.46	
	 Smith	had	a	previous	conviction	for	assault.	 1.22	 0.44	
4	 Smith’s	fingerprints	were	found	on	the	bottle	of	liquor,	

although	it	was	impossible	to	tell	whether	these	were	
recent.	 1.01	 0.53	

	 The	addition	of	the	sleeping	pills	to	the	liquor	was	
unlikely	to	have	altered	its	taste.	 0.92	 0.51	

	 The	local	pharmacist	testified	that	Smith	had	bought	the	
sleeping	pills	in	his	pharmacy	recently	after	complaining	
of	insomnia.	 1.29	 0.48	

	221	
Table	S1.	The	12	pieces	of	evidence	suggesting	that	Smith	is	guilty,	with	average	relative	222	
strengths	and	standard	deviations.	This	data	was	based	on	participants’	judgments	about	223	
the	strength	of	evidence,	as	collected	at	the	end	of	Experiments	1,	2.	The	average	relative	224	
strength	of	evidence	in	blocks	1,2,3	and	4	is	0.90,	0.98,	1.06	and	1.07	respectively.	225	
	226	
Details	of	the	Bayesian	Analyses	227	
The	computations	of	BIC	and	Bayes	Factors	were	carried	out	following	Jarosz	and	Wiley	228	
(22).	In	particular,	the	BIC	was	estimated	from	the	R2	via,	229	

𝐵𝐼𝐶 = 𝑛 ∗ ln 1 − 𝑅! + 𝑘 ∗ ln (𝑛)	
Where	k	is	the	number	of	free	parameters	and	n	is	the	sample	size.	The	Bayes	factors	were	230	
then	computed	in	the	usual	way,	231	

𝐵𝐹!" = 𝑒!"#!!"/!	
where	𝛥𝐵𝐼𝐶!" = 𝐵𝐼𝐶! − 𝐵𝐼𝐶! 	is	the	difference	in	BIC	values	for	the	Quantum	and	Bayesian	232	
models.		233	
	234	
Additional	references	for	Supplementary	Materials	235	
(26)	Yearsley,	JM	and	Busemeyer,	JR	(in	press).	Quantum	cognition	and	decision	theories:	A	236	
tutorial.	Journal	of	Mathematical	Psychology.	237	


